A database of categories
Revisão | 7989f2fca513b79c7f78f0985f89f17a7dce37ef (tree) |
---|---|
Hora | 2021-09-02 14:17:34 |
Autor | Corbin <cds@corb...> |
Commiter | Corbin |
Add many row templates.
@@ -0,0 +1,18 @@ | ||
1 | +{% extends "default:row.html" %} | |
2 | + | |
3 | +{% block content %} | |
4 | + | |
5 | +{% set cat = display_rows[0]["parent"] %} | |
6 | +{% set grpcat = display_rows[0]["internal_groups"] %} | |
7 | + | |
8 | +<h1>Category of Groups: {{ grpcat }}</h1> | |
9 | + | |
10 | +<p>{{ grpcat }} is a subcategory of {{ cat }} whose objects are all internal | |
11 | +groups:</p> | |
12 | + | |
13 | +<div class="bigmath"> | |
14 | + Grp({{ cat }}) ≅ {{ grpcat }} | |
15 | +</div> | |
16 | + | |
17 | +{{ super() }} | |
18 | +{% endblock %} |
@@ -0,0 +1,21 @@ | ||
1 | +{% extends "default:row.html" %} | |
2 | + | |
3 | +{% block content %} | |
4 | + | |
5 | +{% set cat = display_rows[0]["parent"] %} | |
6 | +{% set moncat = display_rows[0]["internal_monoids"] %} | |
7 | + | |
8 | +<h1>Category of Monoids: {{ moncat }}</h1> | |
9 | + | |
10 | +<p>{{ moncat }} is a subcategory of {{ cat }} whose objects are all internal | |
11 | +monoids:</p> | |
12 | + | |
13 | +<div class="bigmath"> | |
14 | + Mon({{ cat }}) ≅ {{ moncat }} | |
15 | +</div> | |
16 | + | |
17 | +<p>Note that {{ cat }} must be a monoidal category in order to even have | |
18 | +internal monoids. This is an instance of the Microcosm Principle.</p> | |
19 | + | |
20 | +{{ super() }} | |
21 | +{% endblock %} |
@@ -0,0 +1,20 @@ | ||
1 | +{% extends "default:row.html" %} | |
2 | + | |
3 | +{% block content %} | |
4 | + | |
5 | +{% set cat = display_rows[0]["parent"] %} | |
6 | +{% set sscat = display_rows[0]["internal_simplicial_sets"] %} | |
7 | + | |
8 | +<h1>Category of Simplicial Objects: {{ sscat }}</h1> | |
9 | + | |
10 | +<p>{{ sscat }} is a full subcategory of {{ cat }} whose objects are all | |
11 | +internal simplicial objects. A simplicial object in {{ cat }} is a | |
12 | +contravariant functor from Δ to {{ cat }}, so the category of simplicial | |
13 | +objects is a contravariant functor category:</p> | |
14 | + | |
15 | +<div class="bigmath"> | |
16 | + {{ sscat }} ≅ [Δ°, {{ cat }}] | |
17 | +</div> | |
18 | + | |
19 | +{{ super() }} | |
20 | +{% endblock %} |
@@ -0,0 +1,17 @@ | ||
1 | +{% extends "default:row.html" %} | |
2 | + | |
3 | +{% block content %} | |
4 | + | |
5 | +{% set cat1 = display_rows[0]["cat1"] %} | |
6 | +{% set cat2 = display_rows[0]["cat2"] %} | |
7 | + | |
8 | +<h1>Equivalence of Categories: {{ cat1 }} ≅ {{ cat2 }}</h1> | |
9 | + | |
10 | +<p>{{ cat1 }} is equivalent to {{ cat2 }}, and vice versa.</p> | |
11 | + | |
12 | +<div class="bigmath"> | |
13 | + {{ cat1 }} ≅ {{ cat2 }} | |
14 | +</div> | |
15 | + | |
16 | +{{ super() }} | |
17 | +{% endblock %} |
@@ -0,0 +1,16 @@ | ||
1 | +{% extends "default:row.html" %} | |
2 | + | |
3 | +{% block content %} | |
4 | + | |
5 | +{% set sub = display_rows[0]["subcategory"] %} | |
6 | +{% set sup = display_rows[0]["supercategory"] %} | |
7 | + | |
8 | +<h1>Full Subcategory: {{ sub }} ⊊ {{ sup }}</h1> | |
9 | + | |
10 | +<p>{{ sub }} is a full subcategory of {{ sup }}. When any two objects of | |
11 | +{{ sup }} are in {{ sub }}, so is every arrow between them. Put another way, | |
12 | +{{ sub }} has only some of the objects of {{ sup }}, but all of the | |
13 | +arrows.</p> | |
14 | + | |
15 | +{{ super() }} | |
16 | +{% endblock %} |
@@ -0,0 +1,18 @@ | ||
1 | +{% extends "default:row.html" %} | |
2 | + | |
3 | +{% block content %} | |
4 | + | |
5 | +{% set diagram = display_rows[0]["diagram"] %} | |
6 | +{% set is_colimit = display_rows[0]["is_colimit"] %} | |
7 | +{% set construction = display_rows[0]["construction"] %} | |
8 | +{% set lim = "colimit" if is_colimit else "limit" %} | |
9 | +{% set Lim = "Colimit" if is_colimit else "Limit" %} | |
10 | + | |
11 | +<h1>{{ Lim }}: {{ construction }}</h1> | |
12 | + | |
13 | +<p>A {{ construction }} is a kind of {{ lim }}. Given a {{ diagram }}, | |
14 | +considered as a diagram in some category, a {{ construction }} is the | |
15 | +{{ lim }} of that {{ diagram }} in that category.</p> | |
16 | + | |
17 | +{{ super() }} | |
18 | +{% endblock %} |
@@ -0,0 +1,21 @@ | ||
1 | +{% extends "default:row.html" %} | |
2 | + | |
3 | +{% block content %} | |
4 | + | |
5 | +{% set cat = display_rows[0]["category"] %} | |
6 | +{% set opcat = display_rows[0]["op"] %} | |
7 | + | |
8 | +{% if cat == opcat %} | |
9 | +<h1>Self-Opposite Category: {{ cat }}</h1> | |
10 | + | |
11 | +<p>{{ cat }} is equivalent to its opposite category.</p> | |
12 | +{% else %} | |
13 | +<h1>Opposite Categories: {{ cat }} & {{ opcat }}</h1> | |
14 | + | |
15 | +<p>{{ cat }} and {{ opcat }} are opposites; they are equivalent, except that | |
16 | +the arrows in {{ cat }} are pointed in the opposite direction from in | |
17 | +{{ opcat }}.</p> | |
18 | +{% endif %} | |
19 | + | |
20 | +{{ super() }} | |
21 | +{% endblock %} |
@@ -0,0 +1,20 @@ | ||
1 | +{% extends "default:row.html" %} | |
2 | + | |
3 | +{% block content %} | |
4 | + | |
5 | +{% set skel = display_rows[0]["skeleton"] %} | |
6 | +{% set cat = display_rows[0]["category"] %} | |
7 | + | |
8 | +<h1>Skeleton: {{ skel }}</h1> | |
9 | + | |
10 | +<p>{{ skel }} is a skeleton of {{ cat }}; {{ skel }} is equivalent to | |
11 | +{{ cat }} but has no isomorphisms. Less cryptically, isomorphic objects in | |
12 | +{{ cat }} are mapped to single objects in {{ skel }} representing their | |
13 | +equivalence classes.</p> | |
14 | + | |
15 | +<p>Skeletons are not quite functorial, because their construction requires the | |
16 | +Axiom of Choice.</p> | |
17 | + | |
18 | +{{ super() }} | |
19 | +{% endblock %} | |
20 | + |
@@ -0,0 +1,28 @@ | ||
1 | +{% extends "default:row.html" %} | |
2 | + | |
3 | +{% block content %} | |
4 | + | |
5 | +{% set topos = display_rows[0]["category"] %} | |
6 | +<h1>Topos: {{ topos }}</h1> | |
7 | + | |
8 | +<p>{{ topos }} is a topos.</p> | |
9 | + | |
10 | +{% if display_rows[0]["is_grothendieck"] %} | |
11 | +<p>{{ topos }} is Grothendieck; it acts like a category of sheaves.</p> | |
12 | +{% endif %} | |
13 | + | |
14 | +{% if display_rows[0]["has_nno"] %} | |
15 | +<p>{{ topos }} has a natural numbers object.</p> | |
16 | +{% endif %} | |
17 | + | |
18 | +{% if display_rows[0]["is_boolean"] %} | |
19 | +<p>{{ topos }} is Boolean; the Law of Excluded Middle is valid within | |
20 | +{{ topos }}.</p> | |
21 | +{% endif %} | |
22 | + | |
23 | +{% if display_rows[0]["is_well_pointed"] %} | |
24 | +<p>{{ topos }} is well-pointed.</p> | |
25 | +{% endif %} | |
26 | + | |
27 | +{{ super() }} | |
28 | +{% endblock %} |