• R/O
  • SSH

Commit

Tags
No Tags

Frequently used words (click to add to your profile)

javac++androidlinuxc#windowsobjective-ccocoa誰得qtpythonphprubygameguibathyscaphec計画中(planning stage)翻訳omegatframeworktwitterdomtestvb.netdirectxゲームエンジンbtronarduinopreviewer

Commit MetaInfo

Revisão3a9fb5caa578dbd583d5c63ef9c2ec4f347dd921 (tree)
Hora2011-03-04 09:23:51
Autorlorenzo
Commiterlorenzo

Mensagem de Log

This code combines two clusters into a new one.

Mudança Sumário

Diff

diff -r 84d1c044288a -r 3a9fb5caa578 Python-codes/compose_two_clusters.py
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/Python-codes/compose_two_clusters.py Fri Mar 04 00:23:51 2011 +0000
@@ -0,0 +1,302 @@
1+#! /usr/bin/env python
2+
3+from enthought.mayavi import mlab
4+
5+import scipy as s
6+import numpy as n
7+import scipy.spatial as sp
8+
9+import scipy.linalg as sl
10+
11+
12+import sys
13+
14+
15+def random_rot():
16+ theta=s.arccos(1.-2.*s.random.uniform(0.,1.,1)[0])-s.pi/2.
17+ phi=s.random.uniform(-s.pi,s.pi,1)[0]
18+ psi=s.random.uniform(-s.pi,s.pi,1)[0]
19+
20+
21+ oneone=s.cos(theta)*s.cos(psi)
22+ onetwo=-s.cos(phi)*s.sin(psi)+s.sin(phi)*s.sin(theta)*s.cos(psi)
23+ onethree=s.sin(phi)*s.sin(psi)+s.cos(phi)*s.sin(theta)*s.cos(psi)
24+
25+ twoone= s.cos(theta)*s.sin(psi)
26+ twotwo=s.cos(phi)*s.cos(psi)+s.sin(phi)*s.sin(theta)*s.sin(psi)
27+ twothree=-s.sin(phi)*s.cos(psi)+s.cos(phi)*s.sin(theta)*s.sin(psi)
28+
29+ threeone=-s.sin(theta)
30+ threetwo=s.sin(phi)*s.cos(theta)
31+ threethree=s.cos(phi)*s.cos(theta)
32+
33+
34+ my_mat=s.zeros(9).reshape((3,3))
35+
36+ my_mat[0,0]=oneone
37+ my_mat[0,1]=onetwo
38+ my_mat[0,2]=onethree
39+
40+ my_mat[1,0]=twoone
41+ my_mat[1,1]=twotwo
42+ my_mat[1,2]=twothree
43+
44+ my_mat[2,0]=threeone
45+ my_mat[2,1]=threetwo
46+ my_mat[2,2]=threethree
47+
48+ return my_mat
49+
50+
51+
52+def accept_reject_rotation(cluster_1, cluster_2, epsi):
53+
54+ while(True):
55+ random_rot_mat= random_rot()
56+ n_row_col=s.shape(cluster_1)
57+
58+ cluster_rot=s.zeros(s.prod(n_row_col)).reshape((n_row_col[0],\
59+ n_row_col[1]))
60+
61+ for i in s.arange(n_row_col[0]):
62+
63+ cluster_rot[i,:]=s.dot(random_rot_mat, cluster_1[i,:])
64+
65+
66+ dist_list = euclidean_distances(cluster_rot, cluster_2)
67+
68+
69+
70+ # print "dist_list is, ", dist_list
71+
72+
73+ # if (not (dist_list < (2.-epsi)).any()) and \
74+ if (not (dist_list < 2.).any()) and \
75+ (dist_list<=(2.+epsi)).any():
76+ cluster_new=s.vstack((cluster_rot, cluster_2))
77+
78+ return cluster_new
79+
80+
81+
82+
83+
84+
85+
86+
87+
88+
89+def euclidean_distances(X, Y, Y_norm_squared=None, squared=False):
90+ """
91+Considering the rows of X (and Y=X) as vectors, compute the
92+distance matrix between each pair of vectors.
93+
94+Parameters
95+----------
96+X: array of shape (n_samples_1, n_features)
97+
98+Y: array of shape (n_samples_2, n_features)
99+
100+Y_norm_squared: array [n_samples_2], optional
101+pre-computed (Y**2).sum(axis=1)
102+
103+squared: boolean, optional
104+This routine will return squared Euclidean distances instead.
105+
106+Returns
107+-------
108+distances: array of shape (n_samples_1, n_samples_2)
109+
110+Examples
111+--------
112+>>> from scikits.learn.metrics.pairwise import euclidean_distances
113+>>> X = [[0, 1], [1, 1]]
114+>>> # distrance between rows of X
115+>>> euclidean_distances(X, X)
116+array([[ 0., 1.],
117+[ 1., 0.]])
118+>>> # get distance to origin
119+>>> euclidean_distances(X, [[0, 0]])
120+array([[ 1. ],
121+[ 1.41421356]])
122+"""
123+ # should not need X_norm_squared because if you could precompute that as
124+ # well as Y, then you should just pre-compute the output and not even
125+ # call this function.
126+ if X is Y:
127+ X = Y = n.asanyarray(X)
128+ else:
129+ X = n.asanyarray(X)
130+ Y = n.asanyarray(Y)
131+
132+ if X.shape[1] != Y.shape[1]:
133+ raise ValueError("Incompatible dimension for X and Y matrices")
134+
135+ XX = n.sum(X * X, axis=1)[:, n.newaxis]
136+ if X is Y: # shortcut in the common case euclidean_distances(X, X)
137+ YY = XX.T
138+ elif Y_norm_squared is None:
139+ YY = Y.copy()
140+ YY **= 2
141+ YY = n.sum(YY, axis=1)[n.newaxis, :]
142+ else:
143+ YY = n.asanyarray(Y_norm_squared)
144+ if YY.shape != (Y.shape[0],):
145+ raise ValueError("Incompatible dimension for Y and Y_norm_squared")
146+ YY = YY[n.newaxis, :]
147+
148+ # TODO:
149+ # a faster cython implementation would do the dot product first,
150+ # and then add XX, add YY, and do the clipping of negative values in
151+ # a single pass over the output matrix.
152+ distances = XX + YY # Using broadcasting
153+ distances -= 2 * n.dot(X, Y.T)
154+ distances = n.maximum(distances, 0)
155+ if squared:
156+ return distances
157+ else:
158+ return n.sqrt(distances)
159+
160+euclidian_distances = euclidean_distances # both spelling for backward compat
161+
162+
163+def find_CM(cluster):
164+ CM=s.mean(cluster, axis=0)
165+ return CM
166+
167+
168+def relocate_cluster(cluster):
169+ cluster_shift=find_CM(cluster)
170+ cluster[:,0]=cluster[:,0]-cluster_shift[0]
171+ cluster[:,1]=cluster[:,1]-cluster_shift[1]
172+ cluster[:,2]=cluster[:,2]-cluster_shift[2]
173+
174+ return cluster
175+
176+def dist_gamma_clusters(cluster_1, cluster_2, kf, df):
177+ N1=s.shape(cluster_1)[0]*1.
178+ N2=s.shape(cluster_2)[0]*1.
179+
180+ print "N1 and N2 are, ", N1, N2
181+
182+ R1sq=s.var(cluster_1[:,0])+s.var(cluster_1[:,1])+\
183+ s.var(cluster_1[:,2]) +1.
184+ R2sq=s.var(cluster_2[:,0])+s.var(cluster_2[:,1])+\
185+ s.var(cluster_2[:,2]) +1.
186+ R1=s.sqrt(R1sq)
187+ R2=s.sqrt(R2sq)
188+
189+ print "R1 is, ", R1
190+ print "R2 is, ", R2
191+
192+ gamma_sq=((N1+N2)**2.)/(N1*N2)*((N1+N2)/kf)**(2./df)\
193+ -(N1+N2)/N2*(R1**2.)-(N1+N2)/N1*(R2**2.)
194+
195+ a=((N1+N2)**2.)/(N1*N2)*((N1+N2)/kf)**(2./df)
196+ b=(N1+N2)/N2*R1**2.
197+ c=(N1+N2)/N1*R2**2.
198+
199+ print "a,b,c are, ", a,b,c
200+
201+ print "gamma_sq is, ", gamma_sq
202+
203+ my_gamma=s.sqrt(gamma_sq)
204+ return my_gamma
205+
206+
207+
208+kf=1.3
209+df= 1.8 # 1.8
210+epsi=0.01
211+
212+
213+cluster_1=n.loadtxt("aggregate_number_21_.dat")
214+
215+cluster_1=relocate_cluster(cluster_1)
216+
217+cm1=find_CM(cluster_1)
218+
219+print "cm1 is, ", cm1
220+
221+print "cluster_1 is, ", cluster_1
222+
223+cluster_2=n.loadtxt("aggregate_number_87_.dat")
224+
225+
226+cluster_2=relocate_cluster(cluster_2)
227+
228+
229+print "cluster_2 is, ", cluster_2
230+
231+
232+gamma=dist_gamma_clusters(cluster_1, cluster_2, kf, df)
233+
234+print "gamma is, ", gamma
235+
236+
237+cluster_2[:,0]=cluster_2[:,0]+gamma
238+
239+
240+cm2=find_CM(cluster_2)
241+
242+print "cm2 is, ", cm2
243+
244+
245+list_dist=euclidean_distances(cluster_1, cluster_2)
246+
247+print "len(list_dist) is, ", s.prod(s.shape(list_dist))
248+
249+print "list_dist is, ", list_dist
250+
251+
252+# x=cluster_2[:,0]
253+# y=cluster_2[:,1]
254+# z=cluster_2[:,2]
255+
256+
257+# mlab.clf()
258+# pts = mlab.points3d(x, y, z, scale_mode='none', resolution=20,\
259+# color=(0,0,1),scale_factor=2.)
260+# #mlab.axes(pts)
261+
262+# mlab.show()
263+
264+
265+my_rot=random_rot()
266+
267+mat_calc=s.dot( my_rot,s.transpose(my_rot))
268+
269+my_det=sl.det(my_rot)
270+
271+print "mat_calc is, ", mat_calc
272+
273+print "my_det is, ", my_det
274+
275+cluster_agglomerate=accept_reject_rotation(cluster_1, cluster_2, epsi)
276+
277+n.savetxt("aggregate_agglomerate.dat", cluster_agglomerate)
278+
279+
280+x=cluster_agglomerate[:,0]
281+y=cluster_agglomerate[:,1]
282+z=cluster_agglomerate[:,2]
283+
284+
285+mlab.clf()
286+pts = mlab.points3d(x, y, z, scale_mode='none', resolution=20,\
287+ color=(0,0,1),scale_factor=2.)
288+#mlab.axes(pts)
289+
290+mlab.show()
291+
292+
293+R1_agg_sq=s.var(cluster_agglomerate[:,0])+s.var(cluster_agglomerate[:,1])+\
294+ s.var(cluster_agglomerate[:,2]) +1.
295+
296+R1_agg=s.sqrt(R1_agg_sq)
297+
298+print "R1agg is, ", R1_agg
299+
300+
301+
302+print "So far so good"