• R/O
  • SSH

Commit

Tags
No Tags

Frequently used words (click to add to your profile)

javac++androidlinuxc#windowsobjective-ccocoa誰得qtpythonphprubygameguibathyscaphec計画中(planning stage)翻訳omegatframeworktwitterdomtestvb.netdirectxゲームエンジンbtronarduinopreviewer

Commit MetaInfo

Revisão8880adc2f05d8e03cbcee07be81f106a11dfaa8a (tree)
Hora2008-08-03 07:55:30
Autoriselllo
Commiteriselllo

Mensagem de Log

I can now choose freely a second time span along which I can calculate
the kernel element.

Mudança Sumário

Diff

diff -r c9d06e7e1e13 -r 8880adc2f05d Python-codes/plot_kernel_elements.py
--- a/Python-codes/plot_kernel_elements.py Fri Aug 01 09:23:57 2008 +0000
+++ b/Python-codes/plot_kernel_elements.py Sat Aug 02 22:55:30 2008 +0000
@@ -41,7 +41,7 @@
4141
4242 sel_ker=s.arange(2)
4343 sel_ker[0]=2
44-sel_ker[1]=2
44+sel_ker[1]=3
4545
4646
4747 sel_ker=sel_ker*1. #to get a floating point array
@@ -329,6 +329,7 @@
329329
330330 p.clf()
331331
332+p.save("residuals.dat",fitted_kernel[1])
332333
333334
334335 fig = p.figure()
@@ -347,5 +348,58 @@
347348
348349 p.clf()
349350
351+#Now I do as above but I specify a time-span
352+
353+time_inf=0.
354+time_sup=100.
355+
356+time_span=s.where((time_coll>time_inf) & (time_coll<time_sup))
357+
358+
359+fitted_kernel=residuals_eval(coll_dens[time_span], n_in_j[time_span], k_ij_inf, k_ij_sup, n_steps)
360+
361+print "fitted_kernel is, ", fitted_kernel[0]
362+
363+
364+
365+
366+fig = p.figure()
367+axes = fig.gca()
368+
369+
370+axes.plot(time_coll[time_span],coll_dens[time_span], "bo", label="n_ij")
371+
372+axes.plot(time_coll[time_span],fitted_kernel[0]*n_in_j[time_span], "k^", label="k_{ij}n_in_j")
373+
374+
375+p.xlabel('Time')
376+p.ylabel('i-mers and j-mers collisions per unit volume and time')
377+#p.title("Evolution Mean-free path")
378+p.grid(True)
379+cluster_name="i-mers_and_j-mers_collisions_and_fit_vs_time_time_span.pdf"
380+axes.legend()
381+p.savefig(cluster_name)
382+
383+p.clf()
384+
385+
386+
387+fig = p.figure()
388+axes = fig.gca()
389+
390+
391+axes.plot(s.linspace(k_ij_inf,k_ij_sup, n_steps),fitted_kernel[1], "bo", label="residuals")
392+
393+p.xlabel('Value of k_{ij}')
394+p.ylabel('Squared sum of the residuals')
395+#p.title("Evolution Mean-free path")
396+p.grid(True)
397+cluster_name="residuals_vs_k_ij_time_span.pdf"
398+axes.legend()
399+p.savefig(cluster_name)
400+
401+p.clf()
402+
403+p.save("residuals_span.dat", fitted_kernel[1])
350404
351405 print "So far so good"