• R/O
  • SSH

Commit

Tags
No Tags

Frequently used words (click to add to your profile)

javac++androidlinuxc#windowsobjective-ccocoa誰得qtpythonphprubygameguibathyscaphec計画中(planning stage)翻訳omegatframeworktwitterdomtestvb.netdirectxゲームエンジンbtronarduinopreviewer

Commit MetaInfo

Revisãoa84ddd6fd86cdf58bcf3c6889837eeee6b45dc5b (tree)
Hora2015-03-20 06:36:08
AutorLorenzo Isella <lorenzo.isella@gmai...>
CommiterLorenzo Isella

Mensagem de Log

A python code implementing a random forest for a Kaggle competition.

Mudança Sumário

Diff

diff -r 2f112ee8959c -r a84ddd6fd86c Python-codes/otto-benchmark.py
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/Python-codes/otto-benchmark.py Thu Mar 19 22:36:08 2015 +0100
@@ -0,0 +1,45 @@
1+#! /usr/bin/env python
2+
3+"""
4+Beating the benchmark
5+Otto Group product classification challenge @ Kaggle
6+
7+__author__ : Abhishek Thakur
8+"""
9+
10+import pandas as pd
11+import numpy as np
12+from sklearn import ensemble, feature_extraction, preprocessing
13+
14+# import data
15+train = pd.read_csv('train.csv')
16+test = pd.read_csv('test.csv')
17+sample = pd.read_csv('sampleSubmission.csv')
18+
19+# drop ids and get labels
20+labels = train.target.values
21+train = train.drop('id', axis=1)
22+train = train.drop('target', axis=1)
23+test = test.drop('id', axis=1)
24+
25+# transform counts to TFIDF features
26+tfidf = feature_extraction.text.TfidfTransformer()
27+train = tfidf.fit_transform(train).toarray()
28+test = tfidf.transform(test).toarray()
29+
30+# encode labels
31+lbl_enc = preprocessing.LabelEncoder()
32+labels = lbl_enc.fit_transform(labels)
33+
34+# train a random forest classifier
35+clf = ensemble.RandomForestClassifier(n_jobs=-1, n_estimators=500)
36+clf.fit(train, labels)
37+
38+# predict on test set
39+preds = clf.predict_proba(test)
40+
41+# create submission file
42+preds = pd.DataFrame(preds, index=sample.id.values, columns=sample.columns[1:])
43+preds.to_csv('benchmark.csv', index_label='id')
44+
45+print "So far so good"