l4P5 (beta-003) | 2009-05-05 20:38 |
Loc (beta-005) | 2009-05-05 20:33 |
wrj4p5 (alpha-011) | 2009-05-05 20:41 |
- /*[class] Vec 5/20/2008 by Classiclll
- * the model of Linear Algebra with the linear operations.
- * The index of Vecrices is 0-based -- e.g.,
- * elem(0) : the left mostelement
- * elem(idx) : the (idx+1)th element.
- * can solve the polynomial equation, all the roots are complex with DKA method
- * v[0]*x^n + v[1]*x^(n-1) + .... + v[n-1]*x^1 = b
- * - you can use the convinient, Vec realRoots(Mat root)
- * to get unique real roots if exist.
- */
- [members]
- static final Vec NaN //constant Vec of one Double.NaN(not a number)
- [constructer]
- Vec() //construct empty
- Vec(int length) //construct zero vector sized by "length"
- Vec(Vec v) //construct same to v
- Vec(double[] d, int length) //construct having d
- Vec(Loc v) //construct 3D vector, (x,y,z)
- [methods]
- <group #1 - Vector Operation - generator>
- Vec copy() //return the copy of me.
- Vec add(Vec m) //return me[i] + m[i]
- Vec add(double d) //return me[i] + d (scalar)
- Vec sub(Vec m) //return me[i] - m[i]
- Vec sub(double d) //return me[i] - d (scalar)
- Vec mul(Vec v) //return me[i] * v[i]
- Vec mul(double d) //return me[i] * d (scalar)
- Vec div(Vec v) //return me[i] / v[i]
- Vec div(double d) //return me[i] / d (scalar)
- Vec setSubVec(Vec subVec, int row) //ret[row+i] <= subVec[i][j]
- Vec SubVec(int start, int end) //return me[sRow->eRow]
- Vec SubVec(int[] selected) //retturn {{.},..{me[selRow][selCol]},..{.}}
- Mat transpose() //return the transpose of me.
- Vec inverse() //"me" must be square, otherwize null returned
- Mat cross(Vec v) //return Mat it's trace has me[i]*v[i]
- <group #2 - Scalar - information>
- double dot(Vec v) //return sum of me[i] * m[i]
- int length() //return the number of elmements
- double elem(int idx) //return the specified element
- double norm() //return the infinit(=maximum) norm of me.
- double normL2() //return the L2 norm of me.
- double sqNormL2() //return the sqare of the L2 norm of me.
- double dist(Vec v) //return euclid distance (=L2) between v and me.
- double dist2(Vec v) //return square of distance between v and me.
- boolean equals(Object object) //return value equolity between me and object
- boolean hasNaN() //return has me some Double.NaN
- boolean hasInf() //return has me some Double.Infinity
- boolean isNaN() //return is me containing NaN or Infinity
- <group #3 - Utilities - generator>
- double[] toArray() //return 2d array of me
- Loc toLoc() //return Loc of me (length must be 3)
- double[] arrayRef() //retuen the reference to 2d array of "me"
- // * modification may cause some trouble.
- String toString() //get the string expression of me.
- <group #4 - High level operator>
- double polyValueAt(double x) //return me[0]*x^n + ... + me[n-1]*x
- Vec realRoots(Mat root)
- // Returns only unique real root with chopping the small imagenary of solve(b).
- Mat solve(double b)
- /* Returns the all roots of the following polynomial equation by the DKA Method.
- me[0]*x^n + ...+me[k]*x^(n-k)+... + me[n-1]*x - b = 0.
- solution matrix has
- solution.rowDim() always 2, (number of parts of the complex expression)
- solution.colDim() the number of solution pairs
- solution[0][k] the real part of (k+1)th solution
- solution[1][k] the imaginary part of (k+1)th solution */
[PageInfo]
LastUpdate: 2008-08-08 12:02:04, ModifiedBy: classiclll
[License]
Creative Commons 2.1 Attribution-ShareAlike
[Permissions]
view:all, edit:login users, delete/config:members